Math Teachers Circles

Some Suggestions

Henri Picciotto

www.MathEducation.page henri@MathEducation.page blog.MathEducation.page Twitter: @hpicciotto

The Challenge

\diamond Implementing lofty goals in actual sessions
\diamond Handling a wide range of participants

Good Problems

Low Threshold

\diamond The question is easily understood
\diamond There are few (or no) prerequisites
\diamond Everyone can start exploring

Low Threshold

Example: polyomino perimeter

Domino

Trominoes

Not polyominoes

Low Threshold

Example: polyomino perimeter

For a given area, what perimeters are possible?

Microworlds

Constrained environments that offer opportunities to engage with powerful ideas.

Microworlds

Example: the geoboard

Microworlds

Example: the geoboard

\diamond How many points, so no three are collinear?
\diamond Find "unexpected" isosceles triangles
\diamond Find all triangles with a given area
\diamond Pick's formula
\diamond etc.

Multiple Paths

There is more than one way towards the solution.

Multiple Paths

Example: Staircases

Partial Solutions

There are interesting partial results to be found, even if you don't come up with a full solution

Partial Solutions

Example: Egyptian Fractions

Write each fraction as a sum of three or fewer unit fractions (fractions whose numerator is 1). One has been done for you. You don't have to do them in order. Don't use negative numbers.
$\frac{4}{3}=$
$\frac{4}{21}=$
$\frac{4}{39}=$
$\frac{4}{4}=$
$\frac{4}{22}=$
$\frac{4}{40}=$
$\frac{4}{5}=\frac{1}{2}+\frac{1}{5}+\frac{1}{10}$
$\frac{4}{23}=$
$\frac{4}{41}=$

Extensions / Generalizations

The problem can be extended or generalized.

Extensions / Generalizations

Example: Geoboard Diagonals

GEOBOARD DIAGONALS

If you connect $(0,0)$ to $(5,3)$ with a straight line, you go through seven unit squares.

14. Exploration If you connect $(0,0)$ to (p, q) with a straight line, how many unit squares do you go through? Experiment and look for patterns. (Assume p and q are positive whole numbers.) Keep a record of your work.

High Ceiling

\diamond The problem should be interesting to you
\diamond The problem should be group-worthy

Planning

\diamond "Good problem" checklist
\diamond Is the session "curricular"?
If not, what is the "take-away"?
\diamond Worksheet or not?
\diamond Backup plan if things don't work out?

Problem Solving!

\diamond Main goal: building a problem-solving culture
\diamond Also: expanding participants' math knowledge
\diamond Along the way: formal vs. informal times

Informal Time

\diamond Participants work on the problem individually, or in pairs, or in small groups - as they choose
\diamond This is what should take up the most time
\diamond The challenge: people work at different rates

Etiquette

Do not require that people work together, instead encourage them to:
\diamond ask for help if they need it
\diamond offer help if they are asked
\diamond share and discuss ideas
Arrange furniture to make that possible.

"If you have a solution..."

\diamond find another one, or another path to this one
\diamond extend / generalize the problem
\diamond write up a clear explanation of your solution

"If you have a solution..."

\diamond do not give it away!
\diamond be appropriately helpful:

- ask questions
- give hints
(this applies to both leader and participants)

Teachers are Students!

\diamond Make your expectations explicit
\diamond Consider "visibly random" groups
\diamond If participants' focus drifts, bring them back in
\diamond Direct intervention - not generic speeches

Formal Time

\diamond This is a time for whole-group discussion.
\diamond Needed if more than one group is totally stuck.
\diamond Useful for sharing partial results
\diamond No side conversations!

Transition to Formal Time

Use an agreed-upon signal

Sharing Results

\diamond Choose groups or individuals who will share
\diamond Sequence from least to most complete
\diamond Avoid repetition, unless needed for understanding

Teaching?

\diamond Yes, but mostly through questions
\diamond The challenge: involving everyone

Teaching

Get responses from all:

\diamond votes
\diamond gestures
\diamond writing

Teaching

Good questions:
\diamond why?
\diamond how do we know?
Not as good:
\diamond yes or no?
\diamond does everyone get it?

Teaching

To increase participation:
\diamond wait, count
\diamond be alert to gender, race, etc.
Helpful prompts:
\diamond tell your neighbor
\diamond restate what X said

Teaching

Praise:

\diamond participation
\diamond risk-taking
\diamond problem-posing
Not so much:
\diamond correct answers, which are their own reward

Teaching

Handling wrong answers:

\diamond poker face
\diamond write many answers
\diamond "this is the right answer to..."
\diamond "choose someone to help you"

Teaching

The punch line / big idea:
\diamond is clear if the problem is curricular
\diamond if not:

- what is it an instance of?
- how is it related to other math?

There is no one way

These are suggestions, not rules. Much depends on:

- presenter personality
- nature of problem
- group dynamics
- etc.

Henri Picciotto

www.MathEducation.page henri@MathEducation.page blog.MathEducation.page Twitter: @hpicciotto

