Solutions to Slumber Theory

1. Eight ($1|2| 3|4 ; 12| 3|4 ; 1| 23|4 ; 1| 2|34 ; 12| 34 ; 1|234 ; 123| 4 ; 1234)$
2. 67 I 89 (12 is not slime since it is not prime, and the only possible slicing creates a sequence which includes 1 , which is not prime. 345 is not slime, since each of the four possible slicings includes a non-prime: $3|4| 5 ; 3|45 ; 34| 5 ; 345$)
3. $2 ; 2|2 ; 3| 2$
4. $5 \times 5=2|5 ; 15 \times 15=2| 2 \mid 5$
5. $3 \times 3 \times 3=217 ; 7 \times 7 \times 7=3 \mid 43$
6. 2 and $3 ; 2 \mid 2$ and $23 ; 31$ and $3 \mid 2$
7. $31,3 \mid 2$, and $3|3 ; 71,7| 2$, and 73
8. There are an infinite number of primes
9. 23 or 213
10. $223,2 \mid 23$, or $2|2| 3$
11. $2,3,5,7,23,37,53,73,373$. There are no others.

Indeed, the only digits one can use are $2,3,5$, and 7 .
2 can only occupy the first place, otherwise there would be a two-digit slice ending in 2 , which would be even and therefore not prime. Similarly, 5 can only occupy the first place, otherwise there would be a two-digit slice ending in 5 , which would be a multiple of 5 , and not prime. A digit cannot be repeated in consecutive positions, since that would create a slice that would be a multiple of 11 .
If the first digit is 2 , the next must be 3 , since 27 is not prime. If the first two digits are 23 , there can be no third digit, since 237 is a multiple of 3 . Therefore, there are no other super-slimes starting with 2.
A parallel argument shows that the super-slimes starting with 5 are only 5 and 53.
Super-slimes starting with 3: there is none greater than 3,37 , and 373 , since 3737 is a multiple of 37 . Super-slimes starting with 7 : there is none greater than 73 , since 737 is a multiple of 11 .

