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Triangle Congruence and Similarity:  

A Common-Core-Compatible Approach 

The Common Core State Standards for Mathematics (CCSSM) include a fundamental 

change in the geometry curriculum in grades 8 to 10: geometric transformations, not congruence 

and similarity postulates, are to constitute the logical foundation of geometry at this level. This 

article proposes an approach to triangle congruence and similarity that is compatible with this 

new vision.  

 Here is a pedagogical argument for this change: congruence postulates are rather 

technical and far from self-evident to a beginner. In fact, many teachers introduce the basic idea 

of congruence by saying something like "If you can superpose two figures, they are congruent." 

Well, that is not very far from saying "If you can move one figure to land exactly on top of the 

other, they are congruent." In other words, basing congruence on transformations is more 

intuitive than basing transformations on congruence. 

 There are also mathematical arguments for the change: 

• A transformational approach offers deeper links between algebra and geometry, given 

the emphasis on functions (and thus composition of functions, inverse functions, fixed 

points, and so on). 

• The natural way transformations connect with complex numbers and matrices can 

immeasurably enhance the teaching of these topics in grades 11-12. 

• A transformational approach can give symmetry a greater role in school mathematics, 

which not only enhances geometric thinking, but also facilitates connections with art and 

nature. 
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• Finally, this approach makes it possible to discuss the similarity of curves (such as 

circles and parabolas), which could not be done under the traditional definition of 

similarity because it relied on equal angles and proportional sides. 

One of the consequences of this change is the need for some clarity on how this new 

vision affects the logical structure of high school geometry. This article, intended for an audience 

of mathematics teachers, professional developers, and curriculum writers, attempts to fill that 

need. While the article is written for adult professionals, we tried to make our approach 

pedagogically sound —something that might be useful in future curriculum development.  

Definitions 

In this article, some definitions are unchanged from a traditional approach to secondary 

school geometry (for example, the definition of the perpendicular bisector of a segment, or that 

of a circle). On the other hand, the following definitions may be new: 

Definitions:  

• A transformation of the plane is a one-to-one function whose domain and range are the entire 

plane. An isometry (or rigid motion) is a transformation of the plane that preserves distance. 

•  A reflection in a line b maps any point on b to itself, and any other point P to a point P' so that 

b is the perpendicular bisector of PP’. 

• A dilation with center O and scale factor k ≠ 0 maps O to itself and any other point P to P’ so 

that O, P, and P’ are collinear and the directed segment OP’ = k · OP. (If k is negative, OP’ and 

OP point in opposite directions. In the CCSSM, no mention is made of the possibility of a 

negative scale factor, but it is both mathematically and pedagogically sound to allow for that 

possibility, especially since all the interactive geometry software applications do so.) 

•  Two figures are congruent if one can be superposed on the other by a sequence of isometries.  
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•  Two figures are similar if one can be superposed on the other by a sequence of isometries and 

dilations.  

Assumptions 

Of course, we assume the parallel postulate. 

We will also make three construction assumptions, which we will use without explicitly 

referencing them: 

• Two distinct lines meet in at most one point.  

• A circle and a line meet in at most two points. 

• Two distinct circles meet in at most two points. 

The following two assumptions about transformations constitute the foundation of much of 

this article. They are consistent with the stronger assumptions suggested in the CCSSM, and in 

fact can serve as a foundation to prove those. 

Assumption 1: Reflection preserves distance and angle measure. 

An immediate consequence of Assumption 1 is that reflection preserves collinearity. The 

CCSSM also makes this assumption about translations and rotations, but that is not necessary for 

our argument here, and moreover, those results can be derived from this assumption.  

Assumption 2: Dilation preserves collinearity. 

 The CCSSM assumes the much stronger result that we prove below as the Fundamental 

Theorem of Dilation. 

Preliminary Results 

We start with three preliminary results. 

Theorem 1: There is a reflection that maps any given point P into any given point Q. 
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Proof: If P = Q, reflection in any line through P will do the job. If not, Q is the reflection of P 

across the perpendicular bisector of PQ. 

Theorem 2: A point P is equidistant from two points A and B if and only if it lies on their 

perpendicular bisector. 

Proof: Given: P is on the perpendicular bisector b of AB. By definition of reflection, B is the 

image of A, and P is its own image in a reflection across b, so PA = PB since reflections preserve 

distance. 

Conversely, given: PA = PB, let us show P must lie on the 

perpendicular bisector of AB.  Draw the angle bisector b of ∠APB. If we can 

show that b is the perpendicular bisector of AB, then we are done, since P is 

on it. 

If we were to reflect A in b, where would its image A' be? Since reflections preserve 

angles, A' must be on the ray PB. Since reflections preserve distance, A' must be on the circle 

centered at P, with radius PA. But the intersection of the ray and the circle is B, so A'=B. It 

follows that B is the reflection of A in b. Therefore b is the perpendicular bisector of AB. QED.  

(An indirect proof is also possible if one assumes the triangle inequality.) 

Theorem 3: If two segments AB and CD have equal length, then one is the image of the other 

with C the image of A and D the image of B, under either one or two reflections, 

Proof: Given AB = CD, by Theorem 1, we can reflect segment AB so that C 

is the image of A. Let B’ be the image of B. If B’ = D, that reflection is the 

required single reflection. If not, since reflections preserve distance, we have 

CB’= AB = CD, and by Theorem 2, C is on the perpendicular bisector b of 

B’D. Therefore, a reflection of CB’ in b yields CD. QED. 
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Corollary: Segments are congruent if and only if they have equal length.  

Proof: Theorem 3 implies that if segments have equal lengths, they are congruent. The fact that 

isometries preserve distance guarantees that if segments are congruent, they have equal lengths. 

Triangle Congruence Criteria 

Theorem: (SSS congruence) If all sides of one triangle are congruent, respectively, to all sides 

of another, then the triangles are congruent. 

Proof: We are given ∆ABC and ∆DEF, with AB = DE, 

BC = EF, and AC = DF.  

 By Theorem 3, we can superpose AB onto DE in 

one or two reflections. Because reflections preserve 

distance, C’ (the image of C) must be at the intersection of 

two circles: one centered at D, with radius DF, the other centered at E, with radius EF.  

F, of course, is on both circles. If C’ = F, we’re done. If not, C’ must be at the other 

intersection, but by Theorem 2, DE must be the perpendicular bisector of FC’, so a reflection 

across DE superposes the two triangles. 

Theorem: (SAS congruence) If two sides of one triangle are congruent to two sides of another, 

and if the included angles have equal measure, then the triangles are congruent. 

Proof: We are given ∆ABC and ∆DEF, with AB = DE, AC 

= DF, and ∠A = ∠D. By Theorem 3, we can superpose AB 

onto DE in one or two reflections, so A’=D and B’=E. 

Because reflections preserve distance, C’ must be on the 

circle with center D and radius DF. Because reflections 

preserve angle measure, C’ must be on one of two rays originating at D: the one through F, or its 
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reflection in DE. In the first case, C’=F and we’re done. Otherwise, to superpose ∆A’B’C’ onto 

∆DEF, reflect it across DE.  Since reflections preserve distance and angle measure, C” = F.  

Theorem: (ASA congruence) If two angles of one triangle have equal measures to two angles of 

another, and if the sides common to these angles in each triangle are congruent, then the triangles 

are congruent. 

Proof: We are given ∆ABC and ∆DEF, with AB = DE, ∠A = ∠D, and 

∠B = ∠E. 

 By Theorem 3, we can superpose AB onto DE in one or two 

reflections. If C’ = F, we’re done. If not, reflect F across DE. Since 

reflections preserves angle measure, C’ must be on the ray DF’ and on 

the ray EF’. It follows that C’ = F’, so a reflection across DE superposes 

the two triangles. 

Fundamental Theorem of Dilations (FTD) 

The following result is foundational to the work on dilations and similarity. The CCSSM 

just requires students to verify this informally, but we offer a proof. The proof uses the fact that 

opposite sides of a parallelogram are equal, which can of course be established with the help of 

congruent triangles and parallel lines cut by a transversal. 

Theorem: (FTD) If C, A, and B are not collinear, the image A’B’ of the segment AB under a 

dilation with center C and scale factor k is parallel to AB. If C, A, and B are collinear, A’ and B’ 

are also on the same line. In either case, A’B’ = k · AB.  

Proof: Part 1: If m passes through C, it follows from the definition of dilation and Assumption 2 

that m’ = m. 
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We now show that under a dilation with center C and scale factor 

k, the image of a line not through C is parallel to its pre-image. Given a 

dilation, assume the image of a line m is m’. Assume that m and m’ are 

not parallel, and meet at a point B. Choose another point A on m. The 

image of A is the intersection of line CA with line m’. B is its own 

image, B’. From A and A', k ≠ 1. From B and B', k = 1. This 

contradiction completes the proof: the lines must be parallel.  

 Part 2: we show that under a dilation with scale factor k, the length of the image of any 

segment is k times the length of its pre-image. Let A’B’ be 

the image of AB in a dilation of center C (not collinear with 

A and B), and scale factor k, with the lengths of various 

segments as labeled in the figure. Then k = a + b
a

= c + d
c

. By 

Part 1, AB and A’B’ are parallel.  

 Draw a line through B parallel to AA’. Let this 

line intersect A’B’ at K. Now dilate ∆ABC from 

center B with scale factor − d
c

, resulting in this 

figure, in which we indicate segment lengths obtained 

from the parallelograms. By the definition of dilation, d
c
= f
e

. Therefore: 1+ d
c
= 1+ f

e
, or 

c + d
c

= e+ f
e

. Hence c + d
c

= e+ f
e

. In terms of the segments, this translates to ′B C
BC

= ′A ′B
AB

= k , 

so A’B’ = k · AB, as was to be proved.  (We used the fact that opposite sides of a parallelogram 

are equal. This can easily be established by using ASA congruence.) 



Lew Douglas and Henri Picciotto  p. 8 

A more straightforward argument based on the distributive rule suffices to prove this 

result if C, A, and B are collinear. 

 This follows readily from The FTD allows us to prove that the CCSSM definition of 

similarity is consistent with the traditional definition: 

Corollary: Similar triangles have equal angles and proportional sides. 

Proof: Every isometry preserves side lengths and angle measures. A dilation preserves angle 

measure because the image of any segment is parallel to or collinear with its pre-image (Part 1 of 

the FTD). A dilation also preserves ratios of side lengths because the length of every segment is 

multiplied by the fixed scale factor (Part 2 of the FTD). This completes the proof. 

Triangle Similarity Criteria 

Theorem: (SSS similarity) If the sides of two triangles are proportional, then the triangles are 

similar. 

Proof: Assume ∆ABC and ∆DEF have proportional sides, with 

ratio k. Dilate ∆ABC with any center and scale factor k, yielding 

∆A’B’C’. ∆A’B’C’ is congruent to ∆DEF by SSS congruence. 

Since we mapped ΔABC to ΔDEF by a dilation and a sequence 

of isometries (those that map ∆A’B’C’ to ∆DEF,) the triangles 

are similar. 
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Theorem: (SAS similarity) If a pair of sides in one triangle is proportional to a pair of sides in 

another triangle, and the angles between those sides are 

congruent, then the triangles are similar. 

  Proof: Given ∆ABC and ∆DEF such that DF
AC

= EF
BC

 = k and 

∠C = ∠F. Dilate ∆ABC with any center and scale factor k, 

yielding ∆A’B’C’. ∆A’B’C’ is congruent to ∆DEF by SAS 

congruence. Therefore, ΔABC and ΔDEF are similar.  

 Theorem: (AA similarity) If two angles in one triangle are equal to two angles in another 

triangle, the triangles are similar.  

Proof: Given ∆ABC and ∆DEF such that ∠C = ∠F and 

∠B = ∠E. Say that EF
BC

= k so that EF = ka. Dilate ∆ABC 

from any point with scale factor k. The resulting ∆A’B’C’ is 

congruent to ∆DEF by ASA congruence, and therefore ∆ABC 

is similar to ∆DEF.  

Curricular Implications 

 One of the implications of the approach outlined herein is that students should do 

substantial work with geometric construction prior to being exposed to these ideas. This work 

should include contemporary tools such as patty paper, Plexiglas see-through mirrors, and 

especially interactive geometry software, in addition to traditional tools like compass and 
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straightedge. Work with these tools is powerful in developing students’ visual sense and logic, 

and is a strong preparation for the proofs presented in this article. 

In our view, the main purpose of teaching geometry in high school is to teach geometry, 

not to build a formal axiomatic system. The geometry curriculum needs to provide many 

opportunities for reasoning without getting stuck prematurely in a too-formal system. This is 

especially true at the beginning of the course, where excessively formal attempts to establish 

results that students consider self-evident undermines student understanding and motivation. 

Therefore, we recommend that students have a lot of experience with interesting questions 

involving geometry (including, but not limited to, transformations) before being introduced to 

the ideas in this article.  

Given this experience and an understanding of the proofs above, students should be able 

to apply ideas from the SSS congruence and similarity proofs, for example, to generate their own 

proofs for the other criteria, perhaps with teacher help. Creating a proof for hypotenuse-leg (HL) 

congruence and similarity can be done in largely the same way, and can serve as an assessment. 

In the bigger picture, we agree with the CCSSM that an informal introduction to the 

triangle congruence criteria should precede any formal work on this topic, but we fear that 

seventh grade may be too early to do this introduction effectively. Moreover, we are certain that 

formal work with similarity should follow formal work on congruence for both logical and 

pedagogical reasons.  

That said, we hope the article will be useful even to teachers and curriculum developers 

who do not agree with our perspective on pedagogy.  


