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Teacher Notes
These lessons provide the framework of an approach to computing geometric transformations 
in a precalculus level course, starting with complex numbers, and ending with matrices. The 
end result is a deeper understanding of complex numbers, and some facility and intuition 
about the basics of matrix arithmetic. The geometric transformations serve as the motivation 
for this work, which is otherwise often devoid of interest for many students.

The lessons assume a fair amount of teacher explanation and class discussion, and should not 
be expected to teach themselves. The unit is based on material I taught at The Urban School of 
San Francisco, in my Space class, an advanced high school geometry elective. The course and 
this material evolved over a dozen iterations. See <www.picciotto.org/math-ed/space>.

Prerequisites

Students should have been introduced to complex numbers, and be familiar with their 
rectangular and polar representations. At The Urban School, that introduction happens 
towards the end of our Algebra 2 course. See our Complex Numbers unit at 
<www.picciotto.org/math-ed/alg-2/complex.pdf>.

Students should also have been introduced to matrices and matrix multiplication. I used the 
approach in the University of Chicago School Mathematics Project Advanced Algebra book.

Technology

Some lessons assume the use of GeoGebra. It is of course possible to do much of this work 
with other software or devices. In fact, I used the TI-89 calculator when teaching this material. 
This document is my attempt to adapt the original lessons to GeoGebra, but it has not been 
tried with actual students, so proceed with caution. If you create a version of this packet using 
some other technological support, I will gladly credit you and post it alongside this version 
and the TI-89 version on <www.MathEducationPage.org>.

Review: Slope of Perpendicular Lines

This lesson reviews the “opposite reciprocal” result, but also proves it. It also includes a 
reminder of similar triangles. All of this will be needed in the subsequent pages.

Complex Numbers Basics (and Transformations)

This lesson combines a (perhaps too sketchy) review of complex numbers with an introduction 
to two key questions we address in this unit: 
◊ How do we compute the coordinates of images of points under various transformations?
◊ How do we use composition of transformations we know how to compute, in order to figure 

out more challenging computations?
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Note that #3 does not require knowing about multiplication in polar form. (This fact will be 
important in the next two lessons, because we will use it to prove a key result about that.)

#5. Multiply by (1, θ) -- a complex number on the unit circle

#6. Subtract p+qi, multiply by (1, θ), add p+qi. In other words, translate to the origin, rotate 
around the origin, translate back.

Complex Multiplication in Polar Form

This two-part lesson ends with a proof of the geometric interpretation of complex number 
multiplication. One way to teach it is to have the students work through the first page on 
graph paper, providing support as needed. Then, present the key ideas of the second page, 
culminating with the proof, without the worksheet. And finally have the students work 
through the second page themselves. This figure may be useful on a projector or interactive 
white board:
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See also the corresponding Cabri figure at <www.picciotto.org/math-ed/space>.

The heart of the proof is SAS similarity between ∆ONP and ∆ORU. Avoid a circular argument! 
U = P·R follows from the argument in #2 of the first page which is generalized in #1 on the 
second page. The right angle at ∠R follows from the argument involving slopes that we used 
in the “Complex Numbers” lesson. 

Computing Any Isometry Using Complex Numbers

The five-step method for #7 is: translate so the y-intercept is at the origin, rotate so the line 
coincides with the x-axis, reflect, rotate back, translate back. Assuming θ = tan-1(2), this 
calculation will do it:

$ (conjugate(((3+2i) – 5i) (cos(-θ)+ i sin(-θ))))(cos(θ)+i sin(θ)) + 5i

Matrices

The remaining lessons on the one hand replicate the approach we used with complex 
numbers, using matrices, and on the other hand introduce increasingly efficient ways to use 
GeoGebra to actually do the computations. 

Having students themselves find the matrices for the transformations is essential if you want 
students to understand why this all works. The fact that this works so well is very motivating 
as an introduction to matrices. This, and demystifying computer graphics (including 
interactive geometry,) is what this unit is about. It is not so much about mastering a 
supposedly useful tool to carry out the transformations, as that is already automated in the 
software we are using.
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Review: Slope of Perpendicular Lines
0.$ What are the three ways to show triangles are similar?

1.$ Consider two perpendicular lines L and M. What is the relationship between their slopes?

L

M

r

q

h

2.$ Use the slope triangles in the figure above to prove this. Hint: start by proving the triangles 
are similar. (Slope triangles by definition have perpendicular sides. The labels h, q, and r 
represent the lengths of the segments.)

3. $ Now prove the converse of this result. (“If the slopes of two lines are … then the lines are 
perpendicular.”) Hint: you can do it by drawing two congruent right triangles.
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Complex Numbers Basics (and Transformations)
You can think of a complex number as a vector that starts at the origin.

Rectangular form: a+bi, with i2 = -1. 
a is the real part. b is the imaginary part.

Polar form: (r, θ) 
r is known as the radius, the modulus, the magnitude, or the absolute value of the number.
θ is the angle or argument.

1.$ Use basic trig to convert from polar to rectangular form and vice versa. (Draw an example 
on graph paper to help you remember how to do this. Work out examples in each of the 
four quadrants.)

GeoGebra shortcuts: 
◊$ Converting from rectangular to polar: for example ToPolar[3+4i]  
◊$ Converting from polar to rectangular: it’s simply r·cos(θ)+r·sin(θ)·i

2.$ Complex addition: (a+bi)+(c+di). 
a.$ Rearrange the terms so that the real part is first, and the imaginary part last.
b.$ Draw an example of this on graph paper, and explain how this addition works like 

vector addition. 
c.$ How would you use complex numbers to find the image of (a, b) by a translation (v, w)?

3.$ Complex multiplication: simple cases. For each example below, draw an example on graph 
paper.
a.$ If k is a real number, distribute k(c+di). How does the resulting vector (the result of 

your calculation) compare with the original (c+di)? This transformation is called a 
___________ with factor ____ and center at _______________.

b.$ Distribute i(c+di). Write the result the usual way, with the real part first, and the 
imaginary part next. How does the resulting vector compare with the original? What is 
this transformation called?

c.$ Distribute ki(c+di). Describe how the resulting vector compares with the original. This 
transformation does not have a name. It is the composition of the previous two.

In a previous course, you learned that (r1, θ1)·(r2, θ2) = (r1r2, θ1+θ2).

4.$ Put that in words: to multiply complex numbers in polar form…

5.$ How would you use complex numbers to find the image of (a, b) by a rotation of θ° centered 
at the origin?
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 Complex Multiplication in Polar Form: A Specific Example
In Math 3, you learned that (r1, θ1)·(r2, θ2) = (r1r2, θ1+θ2). We will use geometry to prove this, 
starting from the definition of i as the square root of –1.

0. $Multiplying a complex number by i is the same as a ______________ around _____________

We will start by analyzing a specific example: (2+i) (3+4i)

1. $ a.$ Draw these two complex numbers as vectors on graph paper. 
b.$ Label the origin as O.
c.$ Label the point 2+i as P, and 3+4i as Q.
d.$ Label the point directly below P on the x-axis N. 

2.$ Distributing, we see that P·Q = (2+i)Q = 2Q + iQ
a.$ Find the points for 2Q and iQ on your graph. Label them R and T.
b.$ Find the point for 2Q+iQ, and label it U.

3.$ Explain: P·Q=U 

We’d like to show that the magnitude of U is the product of the magnitudes of P and Q, and 
that its angle is the sum of their angles. We will do this with the help of triangles ∆OUR and 
∆OPN.

4.$ Using only the information about how we created U and R, show that ∆OUR and ∆OPN 
are similar. What is the scaling factor?

5. $ Show that |U|=|P|·|Q|

6.$ Show that ∠ NOU = ∠NOP+∠NOQ

If you understand this so far, you’re ready to generalize. 
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Complex Multiplication in Polar Form: Generalizing
This time we will go through the argument with a generic figure. P=a+bi, Q=c+di, and the 
other points are defined as in the figure below.

1. Explain this: (a+bi)(c+di) = a(c+di) + 
bi(c+di). 

Another way to write the above is: 
(a+bi)Q = aQ + biQ if Q is the complex 
number (c+di).

By answering the next few questions, 
you will see that this figure is an 
illustration of the above equation. 

2.	 On the figure, what point represents:
a.	 aQ
b.	 iQ
c.	 biQ
d.	 aQ + biQ

3.	 Explain why U = P·Q, using #2.

Up to this point, we worked with the rectangular form of P, Q, and U. To prove the result we are after, 
we will now switch to polar form, and use similar triangles in the figure above.

4.	 Say that P = (r1, θ1), Q = (r2, θ2), and 
U = (r, θ). Label the figure accordingly. 

5.	 Prove that ∆ONP is similar to ∆ORU. What is the scaling factor? 

6. 	 Prove that r = r1r2.

7. 	 Prove that θ = θ1+θ2.

Therefore: (r1, θ1)·(r2, θ2) = (r1r2, θ1+θ2)

QED
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Computing Any Isometry Using Complex Numbers
1.$ Review: Make sure you know how to use complex numbers to compute the image of a 

point (a,b) under: 
a.$ Translation by a vector (v,w)
b.$ Translation by a vector (r,θ)
c.$ Rotation by θ degrees around the origin.

2.$ How would you use complex numbers to find the image of (a, b) by a rotation of θ° 
centered at (p, q)? (Hint: this will take three steps — translate, rotate, translate back)

What we are missing is a method for computing reflections.

3.$ The image of (a,b) after reflection in the x-axis is ___________.

4. $ The image of a+bi after reflection in the x-axis is ___________.

This image is called the conjugate of a+bi, which GeoGebra will return if you enter 
$ conjugate(a+bi). 

Three-step method: We will find the image of (a,b) in a line y=mx, by rotating so the line lies 
on the x-axis, then we’ll reflect across the x-axis, then we’ll rotate back.

4.$ What is the angle between y = 2x and the x-axis?

5.$ What is the reflection of the point (3,2) across the line with equation y=2x?

6.$ Now let us reflect (3,2) in the line y=x.
a.$ Predict the coordinates of the image
b.$ Check whether the three-step method gives you that answer.

7.$ Work out a strategy (five steps) to reflect (3,2) across the line with equation y = 2x+5. Find 
the coordinates of the image.

8.$ Work out a strategy to glide-reflect (3,2) with mirror y=x+4 and vector (5,5) 

You can now compute the results of any isometry! However this method has shortcomings: 
◊ It is tricky to keep track of parentheses and order of operations.
◊ It is inconvenient when calculating the image of a polygon, as the calculation has to be done 

for each vertex. 
◊ It does not generalize to three dimensions. 
All of those concerns are addressed by using matrices. In fact, all computer animation is done 
by matrix calculations of geometric transformations. This is what we will learn next. 
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Computing Some Transformations with Matrices

We will represent points using a vertical (2 by 1) format: 
 

x
y
⎡

⎣
⎢

⎤

⎦
⎥ . An n-gon will be represented by 

a 2 by n matrix. For example: 
 

1 2 1
1 1 3
⎡

⎣
⎢

⎤

⎦
⎥  represents a right triangle. 

1.$ Find a matrix M such that M·
 

x
y
⎡

⎣
⎢

⎤

⎦
⎥  will correspond to the image of (x,y) after a dilation 

centered at the origin, with factor k.

2.$ Find a matrix M such that M·
 

x
y
⎡

⎣
⎢

⎤

⎦
⎥  will correspond to the image of (x,y) after a reflection in 

the y-axis.

3.$ Find a matrix M such that M·
 

x
y
⎡

⎣
⎢

⎤

⎦
⎥  will correspond to the image of (x,y) after a reflection in 

the y=x line.

4.$ Find a matrix M such that M·
 

x
y
⎡

⎣
⎢

⎤

⎦
⎥  will correspond to the image of (x,y) after a 180° rotation 

around the origin.

In a previous lesson, you found the formula for the image of a point (x,y) under a rotation of 
θ° around the origin. 

5.$ Find a matrix M such that M·
 

x
y
⎡

⎣
⎢

⎤

⎦
⎥  will correspond to the image of (x,y) after a rotation of θ° 

around the origin.

In a previous lesson, you found a way to use the complex conjugate as part of a three-step 
process to reflect a point across any line through the origin. 

6.$ Find a sequence of three matrices L, M, N such that N·M·L·
 

x
y
⎡

⎣
⎢

⎤

⎦
⎥  will correspond to the 

image of (x,y) after a reflection in the y=2x line. Note that the matrices are written from 
right to left in the multiplication.
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Matrices in GeoGebra
GeoGebra can do matrix multiplication.

To enter a matrix, enclose it in {curly brackets}. Within that, each row is enclosed in curly 
brackets. Rows, and the items in each row, are separated by commas. 

For example, to enter the multiplication 1 0
0 −1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

2
3

⎡

⎣
⎢

⎤

⎦
⎥ , enter: {{1,0},{0,-1}}*{{2},{3}} 

The result appears in the Algebra pane.

1.$ Check that the above multiplication gives the expected result. 

If, for example,  you want to use sin 56° in a matrix, just enter sin(56°). You don’t have to get a 
decimal for it. However you do have to use the degree symbol, which you can get (in GeoGebra) as 
control-o.

However, it is tedious to enter matrices over and over, and it is easy make mistakes. One way 
to make this more convenient is to use the spreadsheet pane. 

For example, to create this matrix: 
1 0
0 −1

⎡

⎣
⎢

⎤

⎦
⎥

2.$ a.$ Enter these numbers into the spreadsheet:

b.$ Select those four cells and choose the Create Matrix tool (in the pop-up menu below 
Create List). 

c.$ In the subsequent dialog, GeoGebra will ask you to name the matrix. Call it rx. 
d.$ Click on Free Objects, which means that the matrix will keep this value. (If you click on 

Dependent Objects, the matrix will change if you change the corresponding numbers 
in the spreadsheet.)

3.$ What does rx do? 

In GeoGebra, you can transform any geometric object with this command in the Input Bar:
ApplyMatrix[<Matrix>, <Object>]

4.$ Make a polygon, show the axes, and use ApplyMatrix[rx, poly1] to make sure everything 
is working. (Of course, if your polygon is not named poly1, use its actual name.)
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Matrix-Making Machine
You can make a matrix that depends on a slider, and use it as a matrix-making machine. For 
example:

1.$ a.$ Make an Angle slider, called α, with 
$ $ Min -179°, Max 180°, Increment 1°, and Width 360 px.
b.$ Create a matrix that depends on α, either in the Input Bar: 
! ro = {{cos(α),-sin(α)},{sin(α),cos(α)}} 

! or in the spreadsheet (you’ll have to copy and paste the α character. Use Dependent 
Objects, since you want the matrix to change when you change the value of α in the 
slider.)

c.$ You can then copy the matrix you made with this command:
! ! ro1=CopyFreeObject[ro]

(ro1 is a possible choice for the matrix’s name.) The value of the matrix will remain fixed, but 
ro will continue to depend on the slider. Keep it in order to manufacture as many rotation 
matrices as you need.

2.$ Use matrix multiplication to find the image of (2, 3) after a rotation of 22° around the origin.

3. $ The next three problems will use a 33° rotation. Create the matrix for it under the name r.

We don’t yet know how to use matrix multiplication for translations, so you’ll have to do 
translations yourself in the next two problems.

4.$ Use matrix multiplication to find the image of (2, 3) after a rotation of 33° around (5, 4)

5. $ Use matrix multiplication to find the image of (5, 4) after a rotation of 33° around (2, 3)

Matrices allow you to transform many points in a single calculation. 

For example, to rotate (9, 4), (7, 5), and (8, 6) 33° around the origin, you can do r ⋅ 9 7 8
4 5 6

⎡

⎣
⎢

⎤

⎦
⎥

6.$ What are the images of the three points?

More Practice

7.$ Make a matrix (perhaps named ro45) for a 45° rotation around the origin.

8.$ Make a matrix (perhaps named ry) for a reflection in the y-axis.
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9.$ How would you use matrix multiplication to reflect a point (x0,y0) around a line through 
the origin, that makes an angle θ with the positive x-axis? 
a.$ Say this in words, not symbols
b.$ Write the matrix multiplication, remembering to go from right to left.

10.$Test your answer with the matrices you made in GeoGebra, using (2,3) for your pre-image, 
and 45° for θ since you know what the result of that reflection should be. You will need 
another rotation matrix, which you might call ro45b. Here is how you would enter this:
! D=ro45*rx*ro45b*(2,3)
Make sure you got the answer you expected.

11.$If a line has equation y = 3x, what angle does it make with the positive x-axis?

12.$What is the image of (4, 5) across the line y = 3x? 
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Matrices and Translation
The shortcoming of using matrix multiplication in the way we have been is that it does not 
work for translations. This problem is solved if we represent points as 3 by 1 matrices, like this: 
x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

. 

1.$ Find a 3 by 3 matrix M such that M·

 

x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 will correspond to the image of (x,y) after a 

translation by vector (v,w).

2.$ Find 3 by 3 matrices for 
a.$ Rotation around the origin by an angle θ
b.$ Dilation centered at the origin, with factor k
c.$ Reflection in the x-axis

3.$ Find a sequence of three matrices L, M, N such that N·M·L·

 

x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 will correspond to the 

image of (x,y) after a θ° rotation around a point (p,q). Remember that the matrices are 
written from right to left in the multiplication.

4.$ Find a sequence of three matrices L, M, N such that N·M·L·

 

x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 will correspond to the 

image of (x,y) after a dilation centered at a point (p,q), with factor k.

5.$ Find a sequence of five matrices J, K, L, M, N such that N·M·L·K·J·

 

x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 will correspond to 

the image of (x,y) after a reflection across the line y=mx+b. 

We are now able to calculate the matrices for any dilation or isometry. (For a glide reflection, 
we can just multiply the matrices for the corresponding reflection and translation.) With the 
help of technology, those calculations are instantaneous, so we have basically solved the 
problem of computing images. 
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Building a GeoGebra Matrix Factory
In order to get more practice with transformation matrices, we will create a GeoGebra matrix 
factory for 3 by 3 matrices. The basic matrices we need are:  

Translation by a given vector, often ending at the origin, and its inverse
Rotation around the origin, by a given angle, and its inverse
Dilation centered at the origin
Reflection across the x-axis

As you learned in previous lessons, by combining these, you can compute the output of all the 
main transformations. Once these are set up, all we need to do to create a single matrix to do a 
given job is multiply the appropriate basic matrices in the right order.

Setup

Download the file 3-by-3.ggb. If you want to create it yourself, here are the ingredients:
-$ The axes and the grid are shown. The latter is spaced with x and y distances of 1.
-$ A vector v for the translations, preferably starting at a lattice point, and ending at the 

origin, but both endpoints are free to move, as is the vector itself.
-$ An angle slider α, for the rotations, from -179° to 180°, with length 360 px.
-$ A slider k for the dilations, with the default parameters.
-$ An asymmetric polygon to be used as pre-image when testing the matrices you create, 

for example a scalene right triangle called tri.
There is also a line l, and the angle β it makes with the x-axis, but those will not be needed 
right away.
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Making the Basic Matrices

Suggestions:
-$ To save time and avoid mistakes when typing brackets, you can copy and paste an 

existing matrix definition, and edit it. Or you can use the spreadsheet and the Create 
Matrix command.

-$ Test each matrix as soon as you make it, by using ApplyMatrix[<matrix>,tri]

x(v) and y(v) will give you the x- and y-components of vector v.

1.$ Make a translation matrix for v, and its inverse. Call them tra and trb.

2.$ Make a rotation matrix, center at the origin, angle α, and its inverse. Call them roa and rob.

3.$ Make a dilation matrix, centered at the origin. Call it dil.

4.$ Make a matrix for reflection in the x-axis. Call it rex.

You now have all you need to quickly create matrices for any of the main transformations.

Matrix Combinations

Example: Say you want to create a single matrix to rotate objects by 56° around (3,4). We’ll 
want to translate the center to the origin, rotate, then translate back.

a.$ Place the tail of v at (3,4), and its head at the origin. This changes tra and trb to the 
matrices we will need. 

b.$ Set α to 56°. This changes roa to the needed rotation matrix.
c.$ Enter mat=trb*roa*tra on the input line. mat will be the needed matrix!
d.$ Place tri at a convenient location.
e.$ Enter ApplyMatrix[mat,tri] on the input line to test your result.

If everything is at it should be, enter rot1=CopyFreeObject[mat] on the input line to preserve a 
copy of the matrix. Then you can reuse mat for future compositions.

5.$ Make a matrix for a 120° rotation around (4,3).

6.$ Make a matrix for a dilation centered at (1, -3) with factor 2.

Making a matrix to reflect in a line is a bigger project, as you need five matrices. Moreover, it 
requires using the angle between the line and the x-axis, and therefore our slider-based 
rotation matrices will not be as convenient. Still, it’s not too difficult if you use line l and create 
rotation matrices for angle β.

7.$ Make a reflection matrix for line l. 

This completes your matrix-making factory. (However it is certainly possible to improve it!)
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Review: From Complex Numbers to Matrices
A point in the plane can be thought of as a ____________ number, just like a point on a number 
line can be thought of as a ________ number.

1.$ Write the following three famous points in a+bi (rectangular) form:
a.$ (1, 45°)
b.$ (1, 60°)
c.$ (1, 90°)
For the purpose of the following exercises, call these points respectively s, t, and i.

2.$ s, t, and i are all on a certain geometric figure. What am I referring to?

3. $ Using your calculator, or not, compute the following, and show the results on graph paper:

a.$ s+t b.$ t+i c.$ s+i

d.$ s·t e.$ t·i f.$ s·i

4.$ Describe the results of the computations above, using the words translation or rotation. 
(There are two ways of doing this for each example.)

5.$ Explain how to use complex numbers to translate a point (x, y) by a vector (v, w)

6.$ Write the coordinates of the point (1,θ) in a+bi form.

7.$ Explain how to use complex numbers to rotate a point (x, y) by an angle θ around the 
origin.

8.$ Use the answer to the previous problem to explain where the rotation matrix comes from.
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